# Separation and Capture of CO<sub>2</sub> Using a High Temperature Pressure Swing Adsorption (PSA) System



#### **Nick Hutson and Brian Attwood**

Office of Research & Development
US Environmental Protection Agency
Research Triangle Park, NC
hutson.nick@epa.gov



## **Steven Reynolds, Sarang Gadre, Armin Ebner and James Ritter**

Department of Chemical Engineering University of South Carolina Columbia, SC

ritter@engr.sc.edu





Third Annual Conference on Carbon Capture and Sequestration May 3 - 6, 2004 Alexandria, Virginia





## **USC - EPA Collaboration**



- University of South Carolina
  - "Radically New Adsorption Cycles for Carbon Dioxide Sequestration" (DOE/NETL)
  - Development and modeling of new Pressure Swing Adsorption (PSA) cycles
    - Traditional Stripping Reflux (SR)
    - Enriching Reflux (ER) and Dual Reflux (DR)
- US EPA Office of Research and Development
  - Sorbent development, characterization, and optimization
  - Relate structure and chemical nature of the sorbents to the adsorption properties





### **Pressure Swing Adsorption** (PSA)



Used industrially for many gas separations

Vacuum Swing Adsorption (VSA) and **Temperature Swing** Adsorption (TSA) are variants

PSA has been proposed for CO<sub>2</sub> separation and capture





#### **Pressure Swing Adsorption (PSA)**

- The viability of PSA for gas separations is dependent on:
  - The PSA cycle operating conditions
    - Purge-to-feed ratio
    - Pressure ratio (P<sub>H</sub>/P<sub>L</sub>)
    - · Cycle times, etc.
  - The effectiveness of the sorbent
    - Capacity (working capacity)
    - Stability (hydrothermal/mechanical and cycling)
    - Kinetics





#### Adsorption of CO<sub>2</sub> on Solid Sorbents

There are many commonly used sorbents (e.g., zeolites, activated carbon, carbon MS) that have good CO<sub>2</sub> capacity at room temperature \times





However, the capacity is greatly diminished at elevated temperatures - and in the presence of steam





### Hydrotalcite-like Compound (HTIc)

Also known as Layered Double Hydroxides (LDHs)

Anionic clays (bi-dimensional basic solids)



[Mg<sub>0.73</sub>Al<sub>0.27</sub>(OH)<sub>2</sub>](CO<sub>3</sub>)<sub>0.135</sub>•mH<sub>2</sub>O  
Layer thickness 
$$\approx 4.8 \text{ Å}$$
  
Interlayer spacing  $\approx 3.0 \text{ Å}$  unheated  
Basal spacing  $\approx 7.8 \text{ Å}$ 

Have been used as catalysts and catalyst supports adsorbents and ion exchangers for treatment of liquid wastes, in medicine (as antacids).

The structure consists of positively-charged layers with interlayer space containing charge compensating anions and water molecules





#### Adsorption of CO<sub>2</sub> on HTlc



$$Q = \frac{q_{mp}b_{p}P}{1+b_{p}P} + \underbrace{\frac{q_{mc}}{2s}\ln\left[\frac{1+b_{c}Pe^{s}}{1+b_{c}Pe^{-s}}\right]}_{\text{physisorption}} + \underbrace{\frac{1+b_{c}Pe^{s}}{1+b_{c}Pe^{-s}}\right]}_{\text{physisorption}}$$

$$q_{mp} = 0.7890 \text{ mmol/g}$$

$$b_p = 30.99 \text{ bar}^{-1}$$

$$s = 1.923$$

$$q_{mc} = 40.17 \text{ mmol/g}$$

$$b_c = 0.0164 \text{ bar}^{-1}$$





#### **Sorbent Characterization**

We have done considerable characterization of the various HTlc sorbents (including high temperature XRD at ORNL)

This has given us insight into the role of structure and chemical properties (*e.g.*, surface basicity) on the adsorption of CO<sub>2</sub> at high temps.



OAK RIDGE NATIONAL LABORATORY





### **Sorbent Development**

 HTIcs have very good CO<sub>2</sub> capacity and selectivity at high temperature

Slow kinetics

 Some loss of capacity with adsorb/desorb cycling —









## PSA Development at University of South Carolina

At USC, traditional (referred to as stripping reflux, SR) as well as **new PSA technologies** are being explored for separation of CO<sub>2</sub> from flue gas streams at elevated temperatures.

- These new technologies are referred to as enriching reflux (ER) and dual reflux (DR) PSA cycles, which are in stark contrast to the conventional stripping reflux (SR) PSA cycles.
- In contrast to traditional PSA separation processes, these new PSA cycles have been specially designed for enriching the heavy component, in this case carbon dioxide.
- New HTlcs being developed by the EPA are being provided to USC for analysis and evaluation using in-house developed SR, ER and DR rigorous PSA process simulators.





## Cyclic Adsorption Process Simulator Development at USC

- rigorous simulators of stripping, enriching and dual reflux (SR, ER and DR) pressure swing adsorption (PSA) cycles being developed for design, optimization and understanding
- ideal, equilibrium theory based simulators of SR, ER and DR PSA being developed for best possible performance and understanding
- approximate SR PSA calculators for education, training and in some cases feasibility
- SR PSA LabView based simulator with control room type visualization for education and training





#### **Cyclic Adsorption Process Objectives**

- describe stripping reflux (SR) PSA process that can be used for CO<sub>2</sub> concentration and recovery at high temperature
- introduce SR-PSA model assumptions
- discuss hydrotalcite adsorbent and process and operating conditions
- present initial simulation results for a twin bed, 4-step SR PSA cycle designed to concentrate CO<sub>2</sub> from a stack gas at high temperature using a hydrotalcite adsorbent
- show methodology to determine optimum operating conditions for a real system (i.e., for a non isothermal-mass transfer limited system)





#### Stripping Reflux (SR) PSA Cycle

- typical 4-step Skarstrom type SR PSA cycle utilized
- countercurrent (CC) blowdown and light product (LP) pressurization utilized
- many other SR PSA cycle configurations exist and being explored



- A: light product (LP) pressurization
- B: high pressure feed
- C: countercurrent (CC) blowdown
- D: countercurrent low pressure purge







#### SR-PSA Model Assumptions

#### **ASSUMPTIONS:**

- · ideal gas law
- plug-flow (negligible radial gradients)
- negligible pressure drop
- finite heat and mass transfer resistances
- mass transfer governed by linear driving force approximation
- heat transfer governed by overall heat transfer coefficient
- loading dependent heat of adsorption
- gas and adsorbed phase heat capacities equal and temperature dependent
- constant adsorbent heat capacity

#### **SOLUTION PROCEDURE:**

- optimum conditions found through extensive parametric studies
- FORTRAN based numerical code (method of lines) uses (DDASPK)

**NON-ISOTHERMAL, MASS TRANSFER LIMITED MODEL!** 





### CO<sub>2</sub> Adsorption Isotherms on Hydrotalcite



Literature
values were
used as an
initial start to
evaluate the
SR PSA
model

Pressure (kPa)





#### Bed Characteristics, Adsorbent Properties, and Transport Properties for SR-PSA Model



Ding and Alpay (2000, 2001)





#### Operating Parameters Investigated with SR PSA Model







#### **Preliminary Results from SR PSA Model**

Conditions:  $y_{A,F} = 0.15$ ,  $P_L = 4$  psia



- Each line represents runs for fixed  $\pi_{\mathsf{T}}$  and  $\gamma$  and varying  $\mathsf{t}_{\mathsf{F/P}}$
- Conditions for optimal SR-PSA operation clearly observed:
  - Curves closer to upper right corner of plot more appropriate
- Enrichments of 3.0 to 3.5 easily obtained with up to 60% CO<sub>2</sub> recovery despite restricting mass transfer limitation-very encouraging results so far!
- Larger  $\gamma$  are still required, while  $\pi_T$  seems close to optimum
- Up to this point, compromise between recoveries and enrichments still unavoidable:
  - Other elements (e.g., cost)
     required to determine optimum
     t<sub>F/P</sub>





#### **Conclusions**

- Hydrotalcite-like compounds (HTlcs) show great promise as high temperature CO<sub>2</sub> solids sorbents.
- Adsorption and desorption kinetics must be improved.
- Simple 4-step SR PSA cycle is able to produce enriched CO<sub>2</sub> with moderate recovery in a high temperature process; 5-step cycle probably better.
- SR-PSA model providing considerable insight into which parameters appear to be most important to maximizing both the enrichments and recoveries.





#### **Path Forward**

- The HTlcs are very open to structural and chemical manipulation.
- Considerable insight has already been gained into the relationship between structure and chemical composition and the adsorption characteristics. This work will continue.
- Much more research being done to determine the optimum operating conditions not only for SR, but also for ER and DR PSA cycles for high temperature CO<sub>2</sub> sequestration.
- Adsorption properties of the EPA developed HTlcs will be provided to USC for inclusion in their PSA models.





#### **Acknowledgments**

 Work at the U. of South Carolina was sponsored by a grant from DOE/NETL (DE-FG26-03NT41799).

 Brian Attwood is a postdoc working under contract # 4C-R105-NTTA with the US EPA Office of Research and Development.



